Discriminative Sparse Connectivity Patterns for Classification of fMRI Data
نویسندگان
چکیده
Functional connectivity using resting-state fMRI has emerged as an important research tool for understanding normal brain function as well as changes occurring during brain development and in various brain disorders. Most prior work has examined changes in pairwise functional connectivity values using a multi-variate classification approach, such as Support Vector Machines (SVM). While it is powerful, SVMs produce a dense set of high-dimensional weight vectors as output, which are difficult to interpret, and require additional post-processing to relate to known functional networks. In this paper, we propose a joint framework that combines network identification and classification, resulting in a set of networks, or Sparse Connectivity Patterns (SCPs) which are functionally interpretable as well as highly discriminative of the two groups. Applied to a study of normal development classifying children vs. adults, the proposed method provided accuracy of 76%(AUC= 0.85), comparable to SVM (79%,AUC=0.87), but with dramatically fewer number of features (50 features vs. 34716 for the SVM). More importantly, this leads to a tremendous improvement in neuro-scientific interpretability, which is specially advantageous in such a study where the group differences are wide-spread throughout the brain. Highest-ranked discriminative SCPs reflect increases in long-range connectivity in adults between the frontal areas and posterior cingulate regions. In contrast, connectivity between the bilateral parahippocampal gyri was decreased in adults compared to children.
منابع مشابه
Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملIdentification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data
Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...
متن کاملDecoding brain states from fMRI connectivity graphs
Functional connectivity analysis of fMRI data can reveal synchronised activity between anatomically distinct brain regions. Here, we extract the characteristic connectivity signatures of different brain states to perform classification, allowing us to decode the different states based on the functional connectivity patterns. Our approach is based on polythetic decision trees, which combine powe...
متن کاملDiscriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold
The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 17 Pt 3 شماره
صفحات -
تاریخ انتشار 2014